If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+3n-7=0
a = 1; b = 3; c = -7;
Δ = b2-4ac
Δ = 32-4·1·(-7)
Δ = 37
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{37}}{2*1}=\frac{-3-\sqrt{37}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{37}}{2*1}=\frac{-3+\sqrt{37}}{2} $
| (2/3)+y-(1/9)=(7/9) | | p2=0.81 | | 5q+2(-8+3q)=1-q | | −x^2+11x=28 | | −x2+11x=28 | | 2x-4=5(-x+2) | | 52=3x+13 | | 5x^-39x-54=0 | | 6=9/k | | 2*(x+8)^2=40 | | 22x=7+4x | | 13x-2(x+4)-8x=1 | | 6=9k | | -4(5x-2)+6=-15 | | 4x-3=7x=2.5 | | −138=−6(6b−7) | | −138≥=6(6b−7) | | 22x=7x=4x | | 5x-2x=2x-20 | | F(x)=x+8+5 | | 3+(1+p)=12 | | 3n-4n=8 | | (10x)-7/12=(9x)+2/9 | | S-4=8(2+1/4s) | | x^2-6x-952=0 | | 4x-4=5(x+2) | | 4x+6x=3-8 | | 3(5+6x)=18x+15 | | 2r–15=-9r+18 | | 8x-2=-9+7× | | −12(4n+2)=19 | | -11-(-26)=x/12 |